Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,3-Bis(phenoxymethyl)buta-1,3-diene

K. Sathiyanarayanan, ${ }^{\text {a }}$ A. George Fernand, ${ }^{\text {a }}$
V. Dhanasekaran ${ }^{\text {a }}$ and R. S. Rathore ${ }^{\text {b* }}$

${ }^{\text {a }}$ Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, and ${ }^{\mathbf{b}}$ School of Biotechnology, Devi Ahilya University, Indore 452 001, India
Correspondence e-mail: ravindranath_rathore@yahoo.com

Received 14 November 2007; accepted 26 November 2007
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.042 ; w R$ factor $=0.126$; data-to-parameter ratio $=16.3$.

The molecule of the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$, a symmetrically phenol-substituted divinyl analog, exhibits crystallographically imposed C_{2} symmetry. The phenolic and divinyl planar groups intersect each other orthogonally, with a dihedral angle of $82.7(1)^{\circ}$. The structure is stabilized by a short intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact. The molecules are held together by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a sheet structure parallel to the (201) plane.

Related literature

The crystal structures of three analogous compounds have been published thus far (Alcock et al., 2006; Sathiyanarayanan et al., 2007, 2008). For molecular and crystal symmetry, see Yao et al. (2002); Pidcock et al. (2003); Narasegowda et al. (2005); Schmidt et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=266.32$
Monoclinic, $P 2_{1} / c$
$a=10.7575$ (5) A
$b=7.0750$ (3) \AA
$c=9.7939$ (5) A
$\beta=109.180$ (2) ${ }^{\circ}$
$V=704.03(6) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
$0.30 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.958, T_{\text {max }}=0.981$
9151 measured reflections 2065 independent reflections 1558 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
127 parameters
$w R\left(F^{2}\right)=0.126$
$S=1.02$
All H -atom parameters refined
2065 reflections
$\Delta \rho_{\max }=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1$	$0.98(2)$	$2.41(2)$	$2.770(2)$	$101(1)$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots C g 1^{\mathrm{i}}$	$0.97(2)$	$2.92(2)$	$3.727(2)$	$142(1)$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \operatorname{Cg}^{1 i}$	$0.99(2)$	$2.73(2)$	$3.591(1)$	$146(1)$
Symmetry codes: (i) $-x, y-\frac{1}{2},-z-\frac{1}{2}$; (ii)	$x, y+1, z . C g 1$ is the centroid of the C1-C6			
ring.				

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

We thank the DRDO, India, for financial support (Grant No. ERIP/ER/0403461/M/01). RSR acknowledges the Science \& Engineering Research Council (DST), Government of India, for providing a Fast-Track grant and the Bioinformatics Center of the School of Biotechnology, Devi Ahilya University, Indore, India, for the use of computational facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2124).

References

Alcock, N. W., Leigh, D. A. \& Lacy, S. M. (2006). Private communication (refcode XAVTIY). CCDC, Union Road, Cambridge, England.
Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Narasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. \& Rathore, R. S. (2005). Acta Cryst. E61, o843-o845.
Pidcock, E., Motherwell, W. D. S. \& Cole, J. C. (2003). Acta Cryst. B59, 634640.

Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. \& Rathore, R. S. (2007). Acta Cryst. E63, o2504-o2505.

Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. \& Rathore, R. S. (2008). Acta Cryst. E64, o123.

Schmidt, M. U., Schmiermund, T. \& Bolte, M. (2006). Acta Cryst. C62, m37m40.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. \& Motherwell, W. D. S. (2002). Acta Cryst. B58, 640-646.

supplementary materials

2,3-Bis(phenoxymethyl)buta-1,3-diene

K. Sathiyanarayanan, A. George Fernand, V. Dhanasekaran and R. S. Rathore

Comment

Previously, we had reported a benzenethiol-substituted divinyl analog, (\{2-methylidene-3-[(phenylsulfanyl)methyl]but-3-en-1-yl\}sulfanyl)benzene, (I), possessing a C_{2} point-group symmetry at the center of divinyl group. In this series, the title compound \{[2-methylidene-3-(phenoxymethyl)but-3-en-1-yl]oxy\} benzene, (III), is a symmetrically phenol-substituted divinyl analog and discussed in the present report. The molecular structure with atom numbering scheme is shown in Fig 1. Three similar compounds have been reported so far. They are: (a) (I) in space group Pbca (Sathiyanarayanan et al., 2007); (b) 2-methylphenol-substituted divinyl analog i.e., 1-methyl-2-(\{2-methylidene-3-[(2-methylphenoxy)methyl] but-3-en-1yl $\}$ oxy) benzene, (II), in space group $P 2_{1} / n$ (Sathiyanarayanan et al., 2008); and (c) 4-(3-hydroxy-3-methoxypropyl)phenolsubstituted analog, namely, 2,3-bis(4-(2-(methoxycarbonyl)ethyl)phenoxymethyl)buta-1,3-diene, (IV), in space group P $2{ }_{1} /$ c (Alcock et al. 2006; CCDC 277599, private communication).

The molecular symmetry $\left(\mathrm{C}_{2}\right)$ is retained in the crystal of (III) and the asymmetric unit is composed of one-half of the molecule ($Z=1 / 2$) as observed in (I), (II) and (IV). The database analysis has revealed that among organic molecules, there is a persistent tendency for molecular symmetry to be retained in the crystal (Yao et al., 2002), although exceptions to this general trend have also been reported even in the case of inversion center that is mostly conserved (Narasegowda et al., 2005; Schmidt et al., 2006). Recent work (Pidcock et al., 2003) has led to the conclusion that the C_{2} point group symmetry is conserved in about 60% of ther reported cases.

Selected bond distances and angles are provided in Table. 1. The least square planes in (III) are defined by phenol ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 6$) and divinyl $\left[\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 7^{\mathrm{i}} / \mathrm{C} 8^{\mathrm{i}} / \mathrm{C} 9^{\mathrm{i}}\right.$; symmetry code (i): $\left.1-x, 1-y,-z\right]$ groups. These planar groups intersect each other orthogonally [inclination angle is $82.7(1)^{\circ}$], as also observed in (I). In contrast, (II) is essentially planar and in (IV), the corresponding adjacent groups are coplanar. The torsion angles describing molecular conformation namely, $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7, \mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$ are trans, gauche ${ }^{-}$and trans, respectively (Table 1).

Hydrogen bond parameters are provided in Table 1. The structure is stabilized by a short intermolecular contact C9—H9B‥O1. (III) lacks any conventional hydrogen-bonding donors. As a result of that, the crystal packing is determined purely by weak intermolecular forces. The molecules form a sheet structure in (201) plane that are held together by $\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots C g 1^{\mathrm{ii}}$ [symmetry code (ii): $-x,-1 / 2+y,-1 / 2-z$] and C9—H9A $\cdots C g 1^{\text {iii }}[$ symmetry code (iii): $x, 1+y, z] . C g 1$ is the centroid of $(\mathrm{C} 1-\mathrm{C} 6)$ ring. The crystal packing view is shown in Fig. 2.

Experimental

One mole of 2,3-bis(iodomethyl)buta-1,3-diene in DMF was added to two moles of sodium phenoxide in DMF dropwise with cooling. The reaction mixture was stirred overnight at room temperature and poured into crushed ice. The solids were filtered and dissolved in ether. The ether extract was washed with sodium thiosulfate and 10% sodium hydroxide and finally

supplementary materials

with water. The solid product was obtained by removal of ether after drying, which was recrystallized from hexane at room temperature (m.p. $364^{\circ} \mathrm{K}$).

Refinement

The positions of all the H atoms were freely refined. The distances with H -atoms are in ranges:- $\mathrm{C}_{\text {aromatic }}-\mathrm{H}=$ 0.94 (1)-1.00 (2); $\mathrm{C}_{s p}{ }^{2}-\mathrm{H}=0.98(2)-0.99(2)$; and $\mathrm{C}_{\text {methylene }}-\mathrm{H}=0.96(2)-1.00$ (2) \AA.

Figures

Fig. 1. A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.

Fig. 2. $\mathrm{C}-\mathrm{H} \cdots \pi$ mediated molecular association into a sheet structure in (20 0 1) plane shown in a crystal packing view. $C g 1$ is the centroid of ($\mathrm{C} 1-\mathrm{C} 6$) ring. Dashed lines represent hydrogen bonds. For clarity, only the selected H atoms, involved in the interactions, are shown.

2,3-Bis(phenoxymethyl)buta-1,3-diene

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=266.32$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.7575$ (5) \AA
$b=7.0750(3) \AA$
$c=9.7939(5) \AA$
$\beta=109.180(2)^{\circ}$
$V=704.03(6) \AA^{3}$
$Z=2$
$F_{000}=284$
$D_{\mathrm{x}}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 364 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 3326 reflections
$\theta=3.5-29.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colourless
$0.30 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker Kappa

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295(2) \mathrm{K}$
ω and φ-scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)

2065 independent reflections
1558 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=30.2^{\circ}$
$\theta_{\text {min }}=2.0^{\circ}$
$h=-15 \rightarrow 14$
$T_{\text {min }}=0.958, T_{\text {max }}=0.981$
9151 measured reflections

$$
k=-9 \rightarrow 9
$$

$l=-7 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.126$
$S=1.02$
2065 reflections
127 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.069 P)^{2}+0.0874 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano \& Andreetti Ric•Sci.(1965),15(II—A),807). Equation of the plane: $\mathrm{m} 1 * X+\mathrm{m} 2 * \mathrm{Y}+\mathrm{m} 3 * Z=\mathrm{d}$

Plane $1 \mathrm{~m} 1=-0.70263(0.00094) \mathrm{m} 2=-0.43813(0.00092) \mathrm{m} 3=0.56068(0.00161) \mathrm{D}=-5.31928(0.00495)$ Atom d s d/s $(\mathrm{d} /$ s)**2 C7*0.0000 $0.00130 .0000 .000 \mathrm{C} 8 * 0.00000 .00100 .0000 .000 \mathrm{C} 9 * 0.00000 .00130 .0000 .000 \mathrm{O} 10.09450 .0009108 .132$ $11692.442===========\operatorname{Sum}\left((\mathrm{d} / \mathrm{s})^{* *} 2\right)$ for starred atoms 0.000

Plane $2 \mathrm{~m} 1=-0.52237(0.00027) \mathrm{m} 2=0.81703(0.00021) \mathrm{m} 3=-0.24412(0.00046) \mathrm{D}=-0.87330(0.00135)$ Atom d s d/s $(\mathrm{d} / \mathrm{s})^{* *} 2$ $\mathrm{O} 1 *-0.00150 .0009-1.7032 .900 \mathrm{C} 1 *-0.00080 .0010-0.7260 .527 \mathrm{C} 2 * 0.00220 .00121 .8893 .567 \mathrm{C} 3 * 0.00110 .00120 .877$ $0.769 \mathrm{C} 4 *-0.00310 .0013-2.3595 .563 \mathrm{C} 5 *-0.00230 .0013-1.7423 .035 \mathrm{C} 6 * 0.00480 .00124 .05816 .471 \mathrm{C} 7-0.20910 .0013-$ $164.27626986 .654===========\operatorname{Sum}\left((\mathrm{d} / \mathrm{s})^{* *} 2\right)$ for starred atoms 32.831 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1282.66 (0.06) 97.34 (0.06)
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.27879(10)$	$0.09878(14)$	$-0.21059(11)$	$0.0352(2)$
C2	$0.19476(11)$	$0.00566(16)$	$-0.33013(11)$	$0.0406(3)$
H2A	$0.2117(13)$	$0.011(2)$	$-0.4223(16)$	$0.053(4)^{*}$

supplementary materials

C3	$0.08982(12)$	$-0.09532(17)$	$-0.31788(13)$	$0.0453(3)$
H3A	$0.0324(14)$	$-0.158(2)$	$-0.4013(17)$	$0.056(4)^{*}$
C4	$0.06662(13)$	$-0.10558(18)$	$-0.18746(14)$	$0.0486(3)$
H4A	$-0.0079(17)$	$-0.176(2)$	$-0.1799(18)$	$0.068(5)^{*}$
C5	$0.15010(13)$	$-0.01250(18)$	$-0.06949(13)$	$0.0475(3)$
H5A	$0.1334(14)$	$-0.017(2)$	$0.0254(17)$	$0.060(4)^{*}$
C6	$0.25622(12)$	$0.09092(16)$	$-0.07924(11)$	$0.0398(3)$
H6A	$0.3116(13)$	$0.158(2)$	$0.0011(15)$	$0.048(3)^{*}$
C7	$0.48149(11)$	$0.26949(18)$	$-0.11341(14)$	$0.0445(3)$
H7A	$0.5603(15)$	$0.277(2)$	$-0.1465(17)$	$0.064(4)^{*}$
H7B	$0.5038(14)$	$0.180(2)$	$-0.0351(15)$	$0.046(3)^{*}$
C8	$0.45057(9)$	$0.46076(14)$	$-0.06518(10)$	$0.0344(2)$
O1	$0.38019(8)$	$0.19483(12)$	$-0.23461(9)$	$0.0474(2)$
C9	$0.34154(12)$	$0.55102(19)$	$-0.13827(14)$	$0.0472(3)$
H9B	$0.2789(14)$	$0.496(2)$	$-0.2264(16)$	$0.053(4)^{*}$
H9A	$0.3180(16)$	$0.677(2)$	$-0.1096(18)$	$0.068(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0346(5)$	$0.0316(5)$	$0.0387(5)$	$0.0011(4)$	$0.0112(4)$	$-0.0036(4)$
C2	$0.0431(6)$	$0.0404(6)$	$0.0355(5)$	$0.0012(5)$	$0.0089(4)$	$-0.0049(4)$
C3	$0.0402(6)$	$0.0406(6)$	$0.0470(6)$	$-0.0019(5)$	$0.0033(5)$	$-0.0059(5)$
C4	$0.0407(6)$	$0.0438(7)$	$0.0612(7)$	$-0.0051(5)$	$0.0166(5)$	$0.0018(5)$
C5	$0.0531(7)$	$0.0475(7)$	$0.0459(6)$	$0.0000(5)$	$0.0215(5)$	$0.0025(5)$
C6	$0.0441(6)$	$0.0384(6)$	$0.0350(5)$	$-0.0006(5)$	$0.0103(4)$	$-0.0043(4)$
C7	$0.0338(6)$	$0.0431(6)$	$0.0546(7)$	$-0.0031(5)$	$0.0119(5)$	$-0.0096(5)$
C8	$0.0316(5)$	$0.0335(5)$	$0.0377(5)$	$-0.0036(4)$	$0.0110(4)$	$0.0026(4)$
O1	$0.0453(5)$	$0.0537(5)$	$0.0464(4)$	$-0.0140(4)$	$0.0194(4)$	$-0.0128(4)$
C9	$0.0408(6)$	$0.0432(6)$	$0.0481(6)$	$0.0011(5)$	$0.0019(5)$	$0.0026(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.3695(13)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3865(14)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3880(14)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3741(17)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$0.979(15)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3816(18)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$0.958(16)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.3759(18)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$0.967(17)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.3854(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$124.85(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.18(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.97(10)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.95(10)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$120.5(8)$

C5-H5A	$1.003(16)$
C6-H6A	$0.944(14)$
C7-O1	$1.4232(14)$
C7-C8	$1.5060(15)$
C7-H7A	$1.003(16)$
C7-H7B	$0.961(15)$
C8-C9	$1.3206(16)$
C8-C8	$1.476(2)$
C9-H9B	$0.983(15)$
C9-H9A	$0.991(17)$
C5-C6-H6A	$121.1(8)$
C1-C6-H6A	$119.8(8)$
O1-C7-C8	$114.05(10)$
O1-C7-H7A	$104.4(9)$
C8-C7-H7A	$110.4(9)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$119.6(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.75(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$119.1(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 A$	$120.2(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.00(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$120.8(10)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$120.2(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.34(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$119.8(9)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$118.9(9)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.99(10)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.90(10)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.46(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.00(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.18(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.11(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.57(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.66(10)$

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	$110.1(8)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	$111.3(8)$
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	$106.1(13)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$123.11(13)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$120.85(10)$
$\mathrm{C} 8-\mathrm{C} 8-\mathrm{C} 7$	$116.03(11)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$118.41(9)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	$121.1(8)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	$123.0(10)$
$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	$115.9(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.74(17)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-4.17(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$9.79(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$-170.59(10)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1$	$-84.83(13)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$176.68(10)$

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 1$	$0.98(2)$	$2.41(2)$	$2.770(2)$	$101(1)$
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	$0.97(2)$	$2.92(2)$	$3.727(2)$	$142(1)$
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{~A} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	$0.99(2)$	$2.73(2)$	$3.591(1)$	$146(1)$

Symmetry codes: (ii) $-x, y-1 / 2,-z-1 / 2$; (iii) $x, y+1, z$.

supplementary materials

Fig. 1

Fig. 2

